ErrorControl.h¶
Note
The documentation on this page was automatically extracted from the DOLFIN C++ code and may need to be edited or expanded.
-
class
ErrorControl
¶ Parent class(es)
(Goal-oriented) Error Control class. The notation used here follows the notation in “Automated goal-oriented error control I: stationary variational problems”, ME Rognes and A Logg, 2010-2011.
Create error control object
- @param a_star (
Form
) - the bilinear form for the dual problem
- @param L_star (
Form
) - the linear form for the dual problem
- @param residual (
Form
) - a functional for the residual (error estimate)
- @param a_R_T (
Form
) - the bilinear form for the strong cell residual problem
- @param L_R_T (
Form
) - the linear form for the strong cell residual problem
- @param a_R_dT (
Form
) - the bilinear form for the strong facet residual problem
- @param L_R_dT (
Form
) - the linear form for the strong facet residual problem
- @param eta_T (
Form
) - a linear form over DG_0 for error indicators
- @param is_linear (bool)
- true iff primal problem is linear
- @param a_star (
-
static Parameters
default_parameters
()¶ Default parameter values
Estimate the error relative to the goal M of the discrete approximation ‘u’ relative to the variational formulation by evaluating the weak residual at an approximation to the dual solution.
- @param u (
Function
) - the primal approximation
- @param bcs (std::vector<
DirichletBC
>) - the primal boundary conditions
- @return double
- error estimate
- @param u (
-
void
compute_indicators
(MeshFunction<double> &indicators, const Function &u)¶ Compute error indicators
- @param indicators (MeshFunction<double>)
- the error indicators (to be computed)
- @param u (
Function
) - the primal approximation
-
void
residual_representation
(Function &R_T, SpecialFacetFunction &R_dT, const Function &u)¶ Compute strong representation (strong cell and facet residuals) of the weak residual.
- @param R_T (
Function
) - the strong cell residual (to be computed)
- @param R_dT (
SpecialFacetFunction
) - the strong facet residual (to be computed)
- @param u (
Function
) - the primal approximation
- @param R_T (
-
void
compute_cell_residual
(Function &R_T, const Function &u)¶ Compute representation for the strong cell residual from the weak residual
-
void
compute_facet_residual
(SpecialFacetFunction &R_dT, const Function &u, const Function &R_T)¶ Compute representation for the strong facet residual from the weak residual and the strong cell residual
- @param R_dT (
SpecialFacetFunction
) - the strong facet residual (to be computed)
- @param u (
Function
) - the primal approximation
- @param R_T (
Function
) - the strong cell residual
- @param R_dT (
Compute dual approximation defined by dual variational problem and dual boundary conditions given by homogenized primal boundary conditions.
- @param z (
Function
) - the dual approximation (to be computed)
- @param bcs (std::vector<DirichletBC>)
- the primal boundary conditions
- @param z (
Compute extrapolation with boundary conditions
- @param z (
Function
) - the extrapolated function (to be computed)
- @param bcs (std::vector<
DirichletBC
>) - the dual boundary conditions
- @param z (