DOLFIN
1.3.0
  • Programmer’s reference for DOLFIN (Python)
  • Collection of documented demos
    • 1. Auto adaptive Poisson equation
    • 2. Set boundary conditions for meshes that include boundary indicators
    • 3. Biharmonic equation
    • 4. Built-in meshes
    • 5. Cahn-Hilliard equation
    • 6. Create CSG 2D-geometry
    • 7. Create CSG 3D-geometry
    • 8. A simple eigenvalue solver
    • 9. Hyperelasticity
    • 10. Generate mesh
    • 11. Mixed formulation for Poisson equation
    • 12. Incompressible Navier-Stokes equations
    • 13. Poisson equation with pure Neumann boundary conditions
    • 14. Nonlinear Poisson equation
    • 15. Poisson equation with periodic boundary conditions
    • 16. Poisson equation
    • 17. Singular Poisson
    • 18. Stokes equations
    • 19. Stokes equations with Mini elements
    • 20. Stokes equations with stabilized first order elements
    • 21. Stokes equations with Taylor-Hood elements
    • 22. Poisson equation with multiple subdomains
    • 23. Marking subdomains of a mesh
    • 24. Tensor-weighted Poisson
  • Quick Programmer’s Reference (Python)
DOLFIN
  • Docs »
  • Collection of documented demos
  • View page source

Collection of documented demosΒΆ

  • 1. Auto adaptive Poisson equation
  • 2. Set boundary conditions for meshes that include boundary indicators
  • 3. Biharmonic equation
  • 4. Built-in meshes
  • 5. Cahn-Hilliard equation
  • 6. Create CSG 2D-geometry
  • 7. Create CSG 3D-geometry
  • 8. A simple eigenvalue solver
  • 9. Hyperelasticity
  • 10. Generate mesh
  • 11. Mixed formulation for Poisson equation
  • 12. Incompressible Navier-Stokes equations
  • 13. Poisson equation with pure Neumann boundary conditions
  • 14. Nonlinear Poisson equation
  • 15. Poisson equation with periodic boundary conditions
  • 16. Poisson equation
  • 17. Singular Poisson
  • 18. Stokes equations
  • 19. Stokes equations with Mini elements
  • 20. Stokes equations with stabilized first order elements
  • 21. Stokes equations with Taylor-Hood elements
  • 22. Poisson equation with multiple subdomains
  • 23. Marking subdomains of a mesh
  • 24. Tensor-weighted Poisson

To run the Python demos, follow the below procedure:

  • Download the source file, e.g., demo_poisson.py, for the demo that you want to run.

  • Use the Python interpreter to run this file:

    $ python demo.py
    

Note

You must have a working installation of FEniCS in order to run the demos.

Next Previous

© Copyright FEniCS Project, https://fenicsproject.org.

Built with Sphinx using a theme provided by Read the Docs.