DirichletBC.h¶
Note
The documentation on this page was automatically extracted from the DOLFIN C++ code and may need to be edited or expanded.
-
class
DirichletBC
¶ Parent class(es)
This class specifies the interface for setting (strong) Dirichlet boundary conditions for partial differential equations,
\[u = g \hbox{ on } G,\]where \(u\) is the solution to be computed, \(g\) is a function and \(G\) is a sub domain of the mesh.
A DirichletBC is specified by the function g, the function space (trial space) and boundary indicators on (a subset of) the mesh boundary.
The boundary indicators may be specified in a number of different ways.
The simplest approach is to specify the boundary by a
SubDomain
object, using the inside() function to specify on which facets the boundary conditions should be applied.Alternatively, the boundary may be specified by a
MeshFunction
labeling all mesh facets together with a number that specifies which facets should be included in the boundary.The third option is to attach the boundary information to the mesh. This is handled automatically when exporting a mesh from for example VMTK.
The ‘method’ variable may be used to specify the type of method used to identify degrees of freedom on the boundary. Available methods are: topological approach (default), geometric approach, and pointwise approach. The topological approach is faster, but will only identify degrees of freedom that are located on a facet that is entirely on the boundary. In particular, the topological approach will not identify degrees of freedom for discontinuous elements (which are all internal to the cell). A remedy for this is to use the geometric approach. In the geometric approach, each dof on each facet that matches the boundary condition will be checked. To apply pointwise boundary conditions e.g. pointloads, one will have to use the pointwise approach which in turn is the slowest of the three possible methods. The three possibilties are “topological”, “geometric” and “pointwise”.
The ‘check_midpoint’ variable can be used to decide whether or not the midpoint of each facet should be checked when a user-defined
SubDomain
is used to define the domain of the boundary condition. By default, midpoints are always checked. Note that this variable may be of importance close to corners, in which case it is sometimes important to check the midpoint to avoid including facets “on the diagonal close” to a corner. This variable is also of importance for curved boundaries (like on a sphere or cylinder), in which case it is important not to check the midpoint which will be located in the interior of a domain defined relative to a radius.-
DirichletBC
(const FunctionSpace &V, const GenericFunction &g, const SubDomain &sub_domain, std::string method = "topological", bool check_midpoint = true)¶ Create boundary condition for subdomain
- Arguments
- V (
FunctionSpace
) - The function space.
- g (
GenericFunction
) - The value.
- sub_domain (
SubDomain
) - The subdomain.
- method (std::string)
- Optional argument: A string specifying the method to identify dofs.
- V (
Create boundary condition for subdomain
- Arguments
- V (
FunctionSpace
) - The function space
- g (
GenericFunction
) - The value
- sub_domain (
SubDomain
) - The subdomain
- method (std::string)
- Optional argument: A string specifying the method to identify dofs
- V (
-
DirichletBC
(const FunctionSpace &V, const GenericFunction &g, const MeshFunction<std::size_t> &sub_domains, std::size_t sub_domain, std::string method = "topological")¶ Create boundary condition for subdomain specified by index
- Arguments
- V (
FunctionSpace
) - The function space.
- g (
GenericFunction
) - The value.
- sub_domains (
MeshFunction
<std::size_t>) - Subdomain markers
- sub_domain (std::size_t)
- The subdomain index (number)
- method (std::string)
- Optional argument: A string specifying the method to identify dofs.
- V (
Create boundary condition for subdomain specified by index
- Arguments
- V (
FunctionSpace
) - The function space.
- g (
GenericFunction
) - The value.
- sub_domains (
MeshFunction
<std::size_t>) - Subdomain markers
- sub_domain (std::size_t)
- The subdomain index (number)
- method (std::string)
- Optional argument: A string specifying the method to identify dofs.
- V (
-
DirichletBC
(const FunctionSpace &V, const GenericFunction &g, std::size_t sub_domain, std::string method = "topological")¶ Create boundary condition for boundary data included in the mesh
- Arguments
- V (
FunctionSpace
) - The function space.
- g (
GenericFunction
) - The value.
- sub_domain (std::size_t)
- The subdomain index (number)
- method (std::string)
- Optional argument: A string specifying the method to identify dofs.
- V (
Create boundary condition for boundary data included in the mesh
- Arguments
- V (
FunctionSpace
) - The function space.
- g (
GenericFunction
) - The value.
- sub_domain (std::size_t)
- The subdomain index (number)
- method (std::string)
- Optional argument: A string specifying the method to identify dofs.
- V (
Create boundary condition for subdomain by boundary markers (cells, local facet numbers)
- Arguments
- V (
FunctionSpace
) - The function space.
- g (
GenericFunction
) - The value.
- markers (std::vector<std::pair<std::size_t, std::size_t> >)
- Subdomain markers (cells, local facet number)
- method (std::string)
- Optional argument: A string specifying the method to identify dofs.
- V (
-
DirichletBC
(const DirichletBC &bc)¶ Copy constructor
- Arguments
- bc (
DirichletBC
) - The object to be copied.
- bc (
-
const DirichletBC &
operator=
(const DirichletBC &bc)¶ Assignment operator
- Arguments
- bc (
DirichletBC
) - Another DirichletBC object.
- bc (
-
void
apply
(GenericMatrix &A) const¶ Apply boundary condition to a matrix
- Arguments
- A (
GenericMatrix
) - The matrix to apply boundary condition to.
- A (
-
void
apply
(GenericVector &b) const¶ Apply boundary condition to a vector
- Arguments
- b (
GenericVector
) - The vector to apply boundary condition to.
- b (
-
void
apply
(GenericMatrix &A, GenericVector &b) const¶ Apply boundary condition to a linear system
- Arguments
- A (
GenericMatrix
) - The matrix to apply boundary condition to.
- b (
GenericVector
) - The vector to apply boundary condition to.
- A (
-
void
apply
(GenericVector &b, const GenericVector &x) const¶ Apply boundary condition to vectors for a nonlinear problem
- Arguments
- b (
GenericVector
) - The vector to apply boundary conditions to.
- x (
GenericVector
) - Another vector (nonlinear problem).
- b (
-
void
apply
(GenericMatrix &A, GenericVector &b, const GenericVector &x) const¶ Apply boundary condition to a linear system for a nonlinear problem
- Arguments
- A (
GenericMatrix
) - The matrix to apply boundary conditions to.
- b (
GenericVector
) - The vector to apply boundary conditions to.
- x (
GenericVector
) - Another vector (nonlinear problem).
- A (
-
void
get_boundary_values
(Map &boundary_values, std::string method = "default") const¶ Get Dirichlet dofs and values. If a method other than ‘pointwise’ is used in parallel, the map may not be complete for local vertices since a vertex can have a bc applied, but the partition might not have a facet on the boundary. To ensure all local boundary dofs are marked, it is necessary to call gather() on the returned boundary values.
- Arguments
- boundary_values (boost::unordered_map<std::size_t, double>)
- Map from dof to boundary value.
- method (std::string)
- Optional argument: A string specifying which method to use.
-
void
gather
(Map &boundary_values) const¶ Get boundary values from neighbour processes. If a method other than “pointwise” is used, this is necessary to ensure all boundary dofs are marked on all processes.
- Arguments
- boundary_values (boost::unordered_map<std::size_t, double>)
- Map from dof to boundary value.
-
void
zero
(GenericMatrix &A) const¶ Make rows of matrix associated with boundary condition zero, useful for non-diagonal matrices in a block matrix.
- Arguments
- A (
GenericMatrix
) - The matrix
- A (
-
void
zero_columns
(GenericMatrix &A, GenericVector &b, double diag_val = 0) const¶ Make columns of matrix associated with boundary condition zero, and update a (right-hand side) vector to reflect the changes. Useful for non-diagonals.
- Arguments
- A (
GenericMatrix
) - The matrix
- b (
GenericVector
) - The vector
- diag_val (double)
- This parameter would normally be -1, 0 or 1.
- A (
-
const std::vector<std::size_t> &
markers
() const¶ Return boundary markers
- Returns
- std::vector<std::pair<std::size_t, std::size_t> >
- Boundary markers (facets stored as pairs of cells and local facet numbers).
-
boost::shared_ptr<const FunctionSpace>
function_space
() const¶ Return function space V
- Returns
- _FunctionSPace_
- The function space to which boundary conditions are applied.
-
boost::shared_ptr<const GenericFunction>
value
() const¶ Return boundary value g
- Returns
GenericFunction
- The boundary values.
-
boost::shared_ptr<const SubDomain>
user_sub_domain
() const¶ Return shared pointer to subdomain
- Returns
SubDomain
- Shared pointer to subdomain.
-
bool
is_compatible
(GenericFunction &v) const¶ Check if given function is compatible with boundary condition (checking only vertex values)
- Arguments
- v (
GenericFunction
) - The function to check for compability with boundary condition.
- v (
- Returns
- bool
- True if compatible.
-
void
set_value
(const GenericFunction &g)¶ Set value g for boundary condition, domain remains unchanged
- Arguments
- g (
GenericFunction
) - The value.
- g (
Set value g for boundary condition, domain remains unchanged
- Arguments
- g (
GenericFunction
) - The value.
- g (
-
void
homogenize
()¶ Set value to 0.0
-
std::string
method
() const¶ Return method used for computing Dirichet dofs
- Returns
- std::string
- Method used for computing Dirichet dofs (“topological”, “geometric” or “pointwise”).
-
static Parameters
default_parameters
()¶ Default parameter values
-
-
class
LocalData
¶